Predictocracy (part 2)
Book review: Predictocracy: Market Mechanisms for Public and Private Decision Making by Michael Abramowicz (continued from prior post).
I’m puzzled by his claim that it’s easier to determine a good subsidy for a PM that predicts what subsidy we should use for a basic PM than it is to determine the a good subsidy for the basic PM. My intuition tells me that at least until traders become experienced with predicting effects of subsidies, the markets that are farther removed from familiar questions will be less predictable. Even with experience, for many of the book’s PMs it’s hard to see what measurable criteria could tell us whether one subsidy level is better than another. There will be some criteria that indicate severely mistaken subsidy levels (zero trading, or enough trading to produce bubbles). But if we try something more sophisticated, such as measuring how accurately PMs with various subsidy levels predict the results of court cases, I predict that we will find some range of subsidies above which increased subsidy produces tiny increases in correlations between PMs and actual trials. Even if we knew that the increased subsidy was producing a more just result, how would we evaluate the tradeoff between justice and the cost of the subsidy? And how would we tell whether the increased subsidy is producing a more just result, or whether the PMs were predicting the actual court cases more accurately by observing effects of factors irrelevant to justice (e.g. the weather on the day the verdict is decided)?
His proposal for self-resolving prediction markets (i.e. markets that predict markets recursively with no grounding in observed results) is bizarre. His arguments about why some of the obvious problems aren’t serious would be fascinating if they didn’t seem pointless due to his failure to address the probably fatal flaw of susceptibility to manipulation.
His description of why short-term PMs may be more resistant to bubbles than stock markets was discredited just as it was being printed. His example of deluded Green Party voters pushing their candidate’s price too high is a near-perfect match for what happened with Ron Paul contracts on Intrade. What Abramowicz missed is that traders betting against Paul needed to tie up a lot more money than traders betting for Paul. High volume futures markets have sophisticated margin rules which mostly eliminate this problem. I expect that low-volume PMs can do the same, but it isn’t easy and companies such as Intrade have only weak motivation to do this.
He suggests that PMs be used to minimize the harm resulting from legislative budget deadlocks by providing tentative funding to projects that PMs predict will receive funding. But if the existence of funding biases legislatures to continue that funding (which appears to be a strong bias, judging by how rare it is for a legislature to stop funding projects), then this proposal would fund many projects that wouldn’t otherwise be funded.
His proposals to use PMs to respond to disasters such as Katrina are poorly thought out. He claims “not much advanced planning of the particular subjects that the markets should cover would be needed”. This appears to underestimate the difficulty of writing unambiguous claims, the time required for traders to understand them, the risks that the agencies creating the PMs will bias the claim wording to the agencies’ advantage, etc. I’d have a lot more confidence in a few preplanned PM claims such as the expected travel times on key sections of roads used in evacuations.
I expect to have additional comments on Predictocracy later this month; they may be technical enough that I will only post the on the futarchy_discuss mailing list.
One comment on “Predictocracy (part 2)”
Comments are closed.
Pingback: Self-Resolving Prediction Markets | Bayesian Investor Blog