MIRI

All posts tagged MIRI

Book review: Notes on a New Philosophy of Empirical Science (Draft Version), by Daniel Burfoot.

Standard views of science focus on comparing theories by finding examples where they make differing predictions, and rejecting the theory that made worse predictions.

Burfoot describes a better view of science, called the Compression Rate Method (CRM), which replaces the “make prediction” step with “make a compression program”, and compares theories by how much they compress a standard (large) database.

These views of science produce mostly equivalent results(!), but CRM provides a better perspective.

Machine Learning (ML) is potentially science, and this book focuses on how ML will be improved by viewing its problems through the lens of CRM. Burfoot complains about the toolkit mentality of traditional ML research, arguing that the CRM approach will turn ML into an empirical science.

This should generate a Kuhnian paradigm shift in ML, with more objective measures of the research quality than any branch of science has achieved so far.

Burfoot focuses on compression as encoding empirical knowledge of specific databases / domains. He rejects the standard goal of a general-purpose compression tool. Instead, he proposes creating compression algorithms that are specialized for each type of database, to reflect what we know about topics (such as images of cars) that are important to us.
Continue Reading

MIRI has produced a potentially important result (called Garrabrant induction) for dealing with uncertainty about logical facts.

The paper is somewhat hard for non-mathematicians to read. This video provides an easier overview, and more context.

It uses prediction markets! “It’s a financial solution to the computer science problem of metamathematics”.

It shows that we can evade disturbing conclusions such as Godel incompleteness and the paradox of the liar, by expecting to only be very confident about logically deducible facts (as opposed to being mathematically certain). That’s similar to the difference between treating beliefs about empirical facts as probabilities, as opposed to boolean values.

I’m somewhat skeptical that it will have an important effect on AI safety, but my intuition says it will produce enough benefits somewhere that it will become at least as famous as Pearl’s work on causality.